本文共 18698 字,大约阅读时间需要 62 分钟。
举例:
package top.nnzi.concurrent.chapter02;import java.util.ArrayList;import java.util.List;import java.util.concurrent.atomic.AtomicInteger;/** * @Description: 无锁解决线程安全问题 * @Author: Aiguodala * @CreateDate: 2021/4/9 22:55 */public class CASTest {       public static void main(String[] args) {           Account.demo(new AccountUnsafe(10000));        Account.demo(new AccountCas(10000));    }}interface Account {       Integer getBalance();    void withdraw(Integer amount);    /**     * 方法内会启动 1000 个线程,每个线程做 -10 元 的操作     * 如果初始余额为 10000 那么正确的结果应当是 0     */    static void demo(Account account) {           List        ts = new ArrayList<>();        long start = System.nanoTime();        for (int i = 0; i < 1000; i++) {               ts.add(new Thread(() -> {                   account.withdraw(10);            }));        }        ts.forEach(Thread::start);        ts.forEach(t -> {               try {                   t.join();            } catch (InterruptedException e) {                   e.printStackTrace();            }        });        long end = System.nanoTime();        System.out.println(account.getBalance() + " cost: " + (end - start) / 1000_000 + " ms");    }}//线程不安全的做法class AccountUnsafe implements Account {       private Integer balance;    public AccountUnsafe(Integer balance) {           this.balance = balance;    }    @Override    public Integer getBalance() {           return this.balance;    }    @Override    public synchronized void withdraw(Integer amount) {           balance -= amount;    }}//线程安全的做法class AccountCas implements Account {       //使用原子整数    private AtomicInteger balance;    public AccountCas(int balance) {           this.balance = new AtomicInteger(balance);    }    @Override    public Integer getBalance() {           //得到原子整数的值        return balance.get();    }    @Override    public void withdraw(Integer amount) {           while(true) {               //获得修改前的值            int prev = balance.get();            //获得修改后的值            int next = prev - amount;            //比较并设值            if(balance.compareAndSet(prev, next)) {                   break;            }        }    }}       前面看到的 AtomicInteger 的解决方法,内部并没有用锁来保护共享变量的线程安全。那么它是如何实现的呢?
其中的关键是 compareAndSwap(比较并设置值),它的简称就是 CAS (也有 Compare And Swap 的说法),它必须是原子操作。

注意
其实 CAS 的底层是 lock cmpxchg 指令(X86 架构),在单核 CPU 和多核 CPU 下都能够保证【比较-交换】的原子性。
在多核状态下,某个核执行到带 lock 的指令时,CPU 会让总线锁住,当这个核把此指令执行完毕,再开启总线。这个过程中不会被线程的调度机制所打断,保证了多个线程对内存操作的准确性,是原子的。
volatile
注意
CAS特点
结合 CAS 和 volatile 可以实现无锁并发,适用于线程数少、多核 CPU 的场景下。
J.U.C 并发包提供了
package top.nnzi.concurrent.chapter02;import java.util.concurrent.atomic.AtomicInteger;/** * @Description: * @Author: Aiguodala * @CreateDate: 2021/4/9 23:29 */public class AtomicTest {       public static void main(String[] args) {           AtomicInteger i = new AtomicInteger(0);        // 获取并自增(i = 0, 结果 i = 1, 返回 0),类似于 i++        System.out.println(i.getAndIncrement());        // 自增并获取(i = 1, 结果 i = 2, 返回 2),类似于 ++i        System.out.println(i.incrementAndGet());        // 自减并获取(i = 2, 结果 i = 1, 返回 1),类似于 --i        System.out.println(i.decrementAndGet());        // 获取并自减(i = 1, 结果 i = 0, 返回 1),类似于 i--        System.out.println(i.getAndDecrement());        // 获取并加值(i = 0, 结果 i = 5, 返回 0)        System.out.println(i.getAndAdd(5));        // 加值并获取(i = 5, 结果 i = 0, 返回 0)        System.out.println(i.addAndGet(-5));        // 获取并更新(i = 0, p 为 i 的当前值, 结果 i = -2, 返回 0)        // 其中函数中的操作能保证原子,但函数需要无副作用        System.out.println(i.getAndUpdate(p -> p - 2));        // 更新并获取(i = -2, p 为 i 的当前值, 结果 i = 0, 返回 0)        // 其中函数中的操作能保证原子,但函数需要无副作用        System.out.println(i.updateAndGet(p -> p + 2));        // 获取并计算(i = 0, p 为 i 的当前值, x 为参数1, 结果 i = 10, 返回 0)        // 其中函数中的操作能保证原子,但函数需要无副作用 // getAndUpdate 如果在 lambda 中引用了外部的局部变量,要保证该局部变量是 final 的        // getAndAccumulate 可以通过 参数1 来引用外部的局部变量,但因为其不在 lambda 中因此不必是        final int a = 0;        System.out.println(i.getAndAccumulate(a, (p, x) -> p + x));        // 计算并获取(i = 10, p 为 i 的当前值, x 为参数1, 结果 i = 0, 返回 0)        // 其中函数中的操作能保证原子,但函数需要无副作用        System.out.println(i.accumulateAndGet(-10, (p, x) -> p + x));    }}   用于解决需要进行原子操作的数据不是基本类型
public interface DecimalAccount {   	BigDecimal getBalance();	void withdraw(BigDecimal amount);	/**	 * 方法内会启动 1000 个线程,每个线程做 -10 元 的操作         * 如果初始余额为 10000 那么正确的结果应当是 0	 */	static void demo(DecimalAccountImpl account) {   		List        ts = new ArrayList<>();		long start = System.nanoTime();		for (int i = 0; i < 1000; i++) {   			ts.add(new Thread(() -> {   				account.withdraw(BigDecimal.TEN);			}));		}		ts.forEach(Thread::start);		ts.forEach(t -> {   			try {   				t.join();			} catch (InterruptedException e) {   				e.printStackTrace();			}		});		long end = System.nanoTime();		System.out.println(account.getBalance() + " cost: " + (end - start) / 1000_000 + " ms");	}}class DecimalAccountImpl implements DecimalAccount {   	//原子引用,泛型类型为小数类型	AtomicReference          balance;	public DecimalAccountImpl(BigDecimal balance) {   		this.balance = new AtomicReference           (balance);	}	@Override	public BigDecimal getBalance() {   		return balance.get();	}	@Override	public void withdraw(BigDecimal amount) {   		while(true) {   			BigDecimal pre = balance.get();			BigDecimal next = pre.subtract(amount);			if(balance.compareAndSet(pre, next)) {   				break;			}		}	}	public static void main(String[] args) {   		DecimalAccount.demo(new DecimalAccountImpl(new BigDecimal("10000")));	}}                  public class Demo3 {   	static AtomicReference        str = new AtomicReference<>("A");	public static void main(String[] args) {   		new Thread(() -> {   			String pre = str.get();			System.out.println("change");			try {   				other();			} catch (InterruptedException e) {   				e.printStackTrace();			}			try {   				Thread.sleep(1000);			} catch (InterruptedException e) {   				e.printStackTrace();			}			//把str中的A改为C			System.out.println("change A->C " + str.compareAndSet(pre, "C"));		}).start();	}	static void other() throws InterruptedException {   		new Thread(()-> {   			System.out.println("change A->B " + str.compareAndSet("A", "B"));		}).start();		Thread.sleep(500);		new Thread(()-> {   			System.out.println("change B->A " + str.compareAndSet("B", "A"));		}).start();	}}       主线程仅能判断出共享变量的值与初值 A 是否相同,不能感知到这种从 A 改为 B 又 改回 A 的情况,如果主线程希望:只要有其它线程【动过了】共享变量,那么自己的 cas 就算失败,这时,仅比较值是不够的,需要再加一个版本号
AtomicStampedReference 可以给原子引用加上版本号,追踪原子引用整个的变化过程,如: A -> B -> A -> C ,通过AtomicStampedReference,我们可以知道,引用变量中途被更改了几次。
public class Demo3 {   	//指定版本号	static AtomicStampedReference        str = new AtomicStampedReference<>("A", 0);	public static void main(String[] args) {   		new Thread(() -> {   			String pre = str.getReference();			//获得版本号			int stamp = str.getStamp();			System.out.println("change");			try {   				other();			} catch (InterruptedException e) {   				e.printStackTrace();			}			try {   				Thread.sleep(1000);			} catch (InterruptedException e) {   				e.printStackTrace();			}			//把str中的A改为C,并比对版本号,如果版本号相同,就执行替换,并让版本号+1			System.out.println("change A->C stamp " + stamp + str.compareAndSet(pre, "C", stamp, stamp+1));		}).start();	}	static void other() throws InterruptedException {   		new Thread(()-> {   			int stamp = str.getStamp();			System.out.println("change A->B stamp " + stamp + str.compareAndSet("A", "B", stamp, stamp+1));		}).start();		Thread.sleep(500);		new Thread(()-> {   			int stamp = str.getStamp();			System.out.println("change B->A stamp " + stamp +  str.compareAndSet("B", "A", stamp, stamp+1));		}).start();	}}       但是有时候,并不关心引用变量更改了几次,只是单纯的关心是否更改过,所以就有了 AtomicMarkableReference
public class Demo4 {   	//指定版本号	static AtomicMarkableReference        str = new AtomicMarkableReference<>("A", true);	public static void main(String[] args) {   		new Thread(() -> {   			String pre = str.getReference();			System.out.println("change");			try {   				other();			} catch (InterruptedException e) {   				e.printStackTrace();			}			try {   				Thread.sleep(1000);			} catch (InterruptedException e) {   				e.printStackTrace();			}			//把str中的A改为C,并比对版本号,如果版本号相同,就执行替换,并让版本号+1			System.out.println("change A->C mark " +  str.compareAndSet(pre, "C", true, false));		}).start();	}	static void other() throws InterruptedException {   		new Thread(() -> {   			System.out.println("change A->A mark " + str.compareAndSet("A", "A", true, false));		}).start();	}}       两者的区别
AtomicStampedReference 需要我们传入整型变量作为版本号,来判定是否被更改过
AtomicMarkableReference需要我们传入布尔变量作为标记,来判断是否被更改过
public class Demo1 {       public static void main(String[] args) {           Student student = new Student();        // 获得原子更新器        // 泛型        // 参数1 持有属性的类 参数2 被更新的属性的类        // newUpdater中的参数:第三个为属性的名称        AtomicReferenceFieldUpdater        updater = AtomicReferenceFieldUpdater.newUpdater(Student.class, String.class, "name");        // 修改        updater.compareAndSet(student, null, "lby");        System.out.println(student);    }}class Student {       volatile String name;    @Override    public String toString() {           return "Student{" +                "name='" + name + '\'' +                '}';    }}       LongAdder 是原子累加器,提供了更快的性能。
/** * Table of cells. When non-null, size is a power of 2. */ transient volatile Cell[] cells; /** * Base value, used mainly when there is no contention, but also as * a fallback during table initialization races. Updated via CAS. */ transient volatile long base; /** * Spinlock (locked via CAS) used when resizing and/or creating Cells. */ transient volatile int cellsBusy;

 因为 CPU 与 内存的速度差异很大,需要靠预读数据至缓存来提升效率。 而缓存以缓存行为单位,每个缓存行对应着一块内存,一般是 64 byte(8 个 long) 缓存的加入会造成数据副本的产生,即同一份数据会缓存在不同核心的缓存行中 CPU 要保证数据的一致性,如果某个 CPU 核心更改了数据,其它 CPU 核心对应的整个缓存行必须失效
 因为 CPU 与 内存的速度差异很大,需要靠预读数据至缓存来提升效率。 而缓存以缓存行为单位,每个缓存行对应着一块内存,一般是 64 byte(8 个 long) 缓存的加入会造成数据副本的产生,即同一份数据会缓存在不同核心的缓存行中 CPU 要保证数据的一致性,如果某个 CPU 核心更改了数据,其它 CPU 核心对应的整个缓存行必须失效   
无论谁修改成功,都会导致对方 Core 的缓存行失效,
比如 Core-0 中 Cell[0]=6000, Cell[1]=8000 要累加 Cell[0]=6001, Cell[1]=8000 ,这时会让 Core-1 的缓存行失效
@sun.misc.Contended 用来解决这个问题,它的原理是在使用此注解的对象或字段的前后各增加 128 字节大小的 padding(空白),从而让 CPU 将对象预读至缓存时占用不同的缓存行,这样,不会造成对方缓存行的失效

@sun.misc.Contended static final class Cell {           volatile long value;        Cell(long x) {    value = x; }        final boolean cas(long cmp, long val) {               return UNSAFE.compareAndSwapLong(this, valueOffset, cmp, val);        }        // Unsafe mechanics        private static final sun.misc.Unsafe UNSAFE;        private static final long valueOffset;        static {               try {                   UNSAFE = sun.misc.Unsafe.getUnsafe();                Class    ak = Cell.class;                valueOffset = UNSAFE.objectFieldOffset                    (ak.getDeclaredField("value"));            } catch (Exception e) {                   throw new Error(e);            }        }    }   public void add(long x) {           Cell[] as; long b, v; int m; Cell a;        if ((as = cells) != null || !casBase(b = base, b + x)) {               boolean uncontended = true;            if (as == null || (m = as.length - 1) < 0 ||                (a = as[getProbe() & m]) == null ||                !(uncontended = a.cas(v = a.value, v + x)))                longAccumulate(x, null, uncontended);        }    }   
final void longAccumulate(long x, LongBinaryOperator fn,                              boolean wasUncontended) {           int h;        if ((h = getProbe()) == 0) {               ThreadLocalRandom.current(); // force initialization            h = getProbe();            wasUncontended = true;        }        boolean collide = false;                // True if last slot nonempty        for (;;) {               Cell[] as; Cell a; int n; long v;            if ((as = cells) != null && (n = as.length) > 0) {                   if ((a = as[(n - 1) & h]) == null) {                       if (cellsBusy == 0) {          // Try to attach new Cell                        Cell r = new Cell(x);   // Optimistically create                        if (cellsBusy == 0 && casCellsBusy()) {                               boolean created = false;                            try {                  // Recheck under lock                                Cell[] rs; int m, j;                                if ((rs = cells) != null &&                                    (m = rs.length) > 0 &&                                    rs[j = (m - 1) & h] == null) {                                       rs[j] = r;                                    created = true;                                }                            } finally {                                   cellsBusy = 0;                            }                            if (created)                                break;                            continue;           // Slot is now non-empty                        }                    }                    collide = false;                }                else if (!wasUncontended)       // CAS already known to fail                    wasUncontended = true;      // Continue after rehash                else if (a.cas(v = a.value, ((fn == null) ? v + x :                                             fn.applyAsLong(v, x))))                    break;                else if (n >= NCPU || cells != as)                    collide = false;            // At max size or stale                else if (!collide)                    collide = true;                else if (cellsBusy == 0 && casCellsBusy()) {                       try {                           if (cells == as) {         // Expand table unless stale                            Cell[] rs = new Cell[n << 1];                            for (int i = 0; i < n; ++i)                                rs[i] = as[i];                            cells = rs;                        }                    } finally {                           cellsBusy = 0;                    }                    collide = false;                    continue;                   // Retry with expanded table                }                h = advanceProbe(h);            }            else if (cellsBusy == 0 && cells == as && casCellsBusy()) {                   boolean init = false;                try {                              // Initialize table                    if (cells == as) {                           Cell[] rs = new Cell[2];                        rs[h & 1] = new Cell(x);                        cells = rs;                        init = true;                    }                } finally {                       cellsBusy = 0;                }                if (init)                    break;            }            else if (casBase(v = base, ((fn == null) ? v + x :                                        fn.applyAsLong(v, x))))                break;                          // Fall back on using base        }    }   
 累加完成之后最后对所有单元数组求和
 累加完成之后最后对所有单元数组求和   public long sum() {           Cell[] as = cells; Cell a;        long sum = base;        if (as != null) {               for (int i = 0; i < as.length; ++i) {                   if ((a = as[i]) != null)                    sum += a.value;            }        }        return sum;    }   Unsafe 对象提供了非常底层的,操作内存、线程的方法,Unsafe 对象不能直接调用,只能通过反射获得
import sun.misc.Unsafe;import java.lang.reflect.Constructor;import java.lang.reflect.Field;import java.lang.reflect.InvocationTargetException;/** * @Description: * @Author: Aiguodala * @CreateDate: 2021/4/10 14:54 */public class GetUnsafe {       public static void main(String[] args) throws NoSuchMethodException, IllegalAccessException, InvocationTargetException, InstantiationException, NoSuchFieldException {           // 通过反射获得Unsafe对象        Class unsafeClass = Unsafe.class;        // 获得构造函数,Unsafe的构造函数为私有的        Constructor constructor = unsafeClass.getDeclaredConstructor();        // 设置为允许访问私有内容        constructor.setAccessible(true);        // 创建Unsafe对象        Unsafe unsafe = (Unsafe) constructor.newInstance();        // 创建Person对象        Person person = new Person();        // 获得其属性 name 的偏移量        Field field = Person.class.getDeclaredField("name");        long offset = unsafe.objectFieldOffset(field);        // 通过unsafe的CAS操作改变值        unsafe.compareAndSwapObject(person, offset, null, "AIguodala");        System.out.println(person);    }}class Person {       // 配合CAS操作,必须用volatile修饰    volatile String name;    @Override    public String toString() {           return "Person{" +                "name='" + name + '\'' +                '}';    }}   package objectShare;import sun.misc.Unsafe;import java.lang.reflect.Constructor;/** * @Description: * @Author: Aiguodala * @CreateDate: 2021/4/10 16:02 */public class MyAtomicInteger {       private volatile int value;    private static final long valueOffset;    private static final Unsafe UNSAFE;    static {           Class unsafeClass = Unsafe.class;        try {               Constructor constructor = unsafeClass.getDeclaredConstructor();            constructor.setAccessible(true);            UNSAFE = (Unsafe) constructor.newInstance();            valueOffset = UNSAFE.objectFieldOffset(MyAtomicInteger.class.getDeclaredField("value"));        } catch (Exception e) {               e.printStackTrace();            throw new RuntimeException();        }    }    public int getValue() {           return value;    }    public void decrement(int x) {           while (true) {               int pre = getValue();            int next = pre - x;            if (UNSAFE.compareAndSwapInt(this,value,pre,next)) {                   break;            }        }    }} 转载地址:http://ssfz.baihongyu.com/